Abstract

Most iron reserves are low in grade with quartz as the main gangue mineral, and anionic reverse flotation has become the most crucial separation method in the processing plants of iron ore. Thus, a flotation feed sample that is a mixture of low-intensity and high-gradient magnetic separators concentrates was acquired from a processing plant. The sample characterizations with X-ray diffraction (XRD), X-ray fluorescence (XRF), laser particle size analyzer, and mineral liberation analysis (MLA) confirmed that the sample consists of iron oxide as a valuable mineral and quartz as a gangue mineral with adequate liberation degree. In the anionic reverse flotation, the interaction of the flotation reagents with the constituents of the feed makes the flotation a complex system. Thus, the selection and optimization of regent dosages were performed using a uniform experimental design to estimate the optimum separation efficiency. The optimum reagent system was 1.6 kg/Mg starch depressant, 1.0 kg/Mg calcium oxide (lime) activator, and 0.8 kg/Mg TD-II anionic collector. At the optimum, 68.90% iron grade with 92.62% recovery was produced.

Department(s)

Mining Engineering

Comments

Natural Science Foundation of Liaoning Province, Grant 11040

Keywords and Phrases

flotation reagents; iron oxide; optimization; quartz; reverse flotation; uniform test design

International Standard Serial Number (ISSN)

1643-1049

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Wroclaw University of Science and Technology, All rights reserved.

Publication Date

01 Jan 2022

Share

 
COinS