Abstract

The application of highly active nano catalysts in advanced oxidation processes (AOPs) improves the production of non-selective hydroxyl radicals and co-oxidants for complete remediation of polluted water. This study focused on the synthesis and characterization of a highly active visible light C–N-co-doped TiO2 nano catalyst that we prepared via the sol-gel method and pyrolyzed at 350 °C for 105 min in an inert atmosphere to prevent combustion of carbon moieties. Then we prolonged the pyrolysis holding time to 120 and 135 min and studied the effect of these changes on the crystal structure, particle size and morphology, electronic properties and photocatalytic performance. The physico-chemical characterization proved that alteration of pyrolysis holding time allows control of the amount of carbon in the TiO2 catalyst causing variations in the band gap, particle size and morphology and induced changes in electronic properties. The C–N–TiO2 nano composites were active under both visible and UV light. Their improved activity was ascribed to a low electron–hole pair recombination rate that enhanced the generation of OH. and related oxidants for total deactivation of O.II dye. This study shows that subtle differences in catalyst preparation conditions affect its physico-chemical properties and catalytic efficiency under solar and UV light.

Department(s)

Mining Engineering

Publication Status

Open Access

Comments

National Research Foundation, Grant 18N/2019

Keywords and Phrases

Band gap; Crystal structure; Holding time; Nano-photo catalysts; Particle size; Photocatalytic activity; Pyrolysis; Recombination rate

International Standard Serial Number (ISSN)

2073-4344

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Aug 2020

Share

 
COinS