Abstract
This study investigated the degradation of 2-nitrophenol (2-NP) in aqueous solution by dielectric barrier discharge (DBD) system alone and its combination with supported TiO2 photocatalysts. The TiO2 photocatalyst supported on a stainless-steel mesh was synthesized using sol–gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide/TiCl4 followed by pyrolysis in the furnace under N2 atmosphere at temperatures of 300, 350, or 400 °C for 3 h holding time. The supported catalysts were characterized for their morphologies, functional groups, crystallinity, surface areas and elemental chemical states by high resolution scanning electron microscope (HRSEM), Fourier transform infrared, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, and X-ray photoelectron spectroscopy. The influence of solution pH on the degradation of 2-NP was investigated. The residual concentration of 2-NP and the intermediate compounds were quantified and identified using high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). The concentration of the dissolved ozone, hydrogen peroxide and hydroxyl radicals generated by the DBD in the presence or absence of a catalyst was monitored using ultraviolet–visible spectroscopy and photoluminescence spectroscopy. The HRSEM, HRTEM, XRD and BET analysis revealed that the optimal thermal conditions to obtain well supported uniformly grown, highly active crystalline TiO2 catalysts with high specific surface area was 350 °C at a 3 h holding time in N2 atmosphere with a flow rate of 20 mL/min. The supporting procedure simultaneously carbon doped the photocatalyst. The DBD system alone without catalysts successfully mineralized 58.6% of 2-NP within 60 min while combined DBD/supported TiO2 nanocrystals achieved 77.5% mineralization within the same treatment time. The increase in mineralisation rate was attributed to the existence of a synergistic effect between the DBD system and the supported catalysts. 2-NP degradation proceeded via hydroxylation, nitration and denigration using DBD alone and combined DBD/Supported TiO2 photocatalyst. Catechol, hydroquinone, hydroxyl-1,4-benzoquinone, 2-nitrohydroquinone, and 2,4-dinitrophenol were identified as major intermediate products. The order of production of free reactive species by DBD alone and combined DBD with supported photocatalyst was OH° > H2O2 > O3. The results showed that the combined system was more than effective than DBD alone for the degradation of the 2-NP in aqueous solution.
Recommended Citation
J. O. Tijani et al., "Degradation of 2-Nitrophenol by Dielectric Barrier Discharge System: The Influence of Carbon Doped TiO2 Photocatalyst Supported on Stainless Steel Mesh," Plasma Chemistry and Plasma Processing, vol. 37, no. 5, pp. 1343 - 1373, Springer, Sep 2017.
The definitive version is available at https://doi.org/10.1007/s11090-017-9824-8
Department(s)
Mining Engineering
Keywords and Phrases
2-Nitrophenol; Dielectric barrier discharge system; Supported TiO photocatalyst 2; Transformation products
International Standard Serial Number (ISSN)
0272-4324
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 Springer, All rights reserved.
Publication Date
01 Sep 2017
Comments
Water Research Commission, Grant WRC/2013/K5/2364