Abstract

As with other engineering design tasks, mine design involves setting design objectives and constraints (the feasible solution space) and finding the optimal design alternative. Mine engineers often struggle to incorporate the preferences of local community members into their evaluation of mine design alternatives because the mining literature lacks tools to quantify such risks during mine planning. This paper presents an approach to evaluate community acceptance (i.e., community preferences for the alternatives) using discrete choice models and decision-based design during mine planning. Using discrete choice models and a rigorous framework, engineers can estimate the cost of social risks as a function of the probability that individuals in the host community will prefer a particular design alternative. They can then estimate the overall utility of a particular design alternative to the project proponents. This paper illustrates the proposed approach with a strategic mine planning exercise for a gold mine. The framework can be a useful tool for designing mines for sustainability, if combined with effective community engagement and management's commitment to creating shared value.

Department(s)

Mining Engineering

Comments

This research was funded by Union Pacific/Rocky Mountain Energy Professor in Mining Engineering Endowment at Missouri University of Science & Technology

Keywords and Phrases

Design for sustainability; Mine planning; Mining; Social license to operate; Social risk

International Standard Serial Number (ISSN)

2071-1050

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2021 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

04 Aug 2021

Share

 
COinS