Factors Influencing the Filtration Performance of Homemade Face Masks
Abstract
The outbreak of the COVID-19 pandemic is causing a shortage of personal protective equipment (PPE) across the world. As a public health response to control the pandemic, wearing homemade face coverings has been proven as a resort to protect both the wearer and others from droplets and aerosols transmission. Although aerosols and droplets can be removed through these non-medical materials with a series of filtration mechanisms, their filtration performances have not been evaluated in detail. Moreover, many factors, such as the fabric properties and the method of usage, also affect filtration performance. In this study, the size-dependent filtration performances of non-medical materials as candidates for face coverings were evaluated comprehensively. The flow resistance across these filter materials, an indicator of breathability, was also examined. The effect of materials properties, washing and drying cycles, and triboelectric effect on particle filtration was also studied. Results showed that the filtration efficiency varied considerably from 5–50% among fabrics materials due to the material properties, such as density and microscopic structure of the materials. Microfiber cloth demonstrated the highest efficiency among the tested materials. In general, fabric materials with higher grams per square meter (GSM) show higher particle filtration efficiency. The results on washing and drying fabric materials indicated decent reusability for fabric materials. The triboelectric charge could increase the filtration performance of the tested fabric materials, but this effect diminishes soon due to the dissipation of charges, meaning that triboelectric charging may not be effective in manufacturing homemade face coverings.
Recommended Citation
W. Hao et al., "Factors Influencing the Filtration Performance of Homemade Face Masks," Journal of Occupational and Environmental Hygiene, vol. 18, no. 3, pp. 128 - 138, Taylor & Francis, Jan 2021.
The definitive version is available at https://doi.org/10.1080/15459624.2020.1868482
Department(s)
Mining Engineering
Second Department
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Aerosols; COVID-19; fabrics; filtration performance; homemade face mask
International Standard Serial Number (ISSN)
1545-9624; 1545-9632
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2021 Taylor & Francis, All rights reserved.
Publication Date
01 Jan 2021
PubMed ID
33476218
Comments
This work is supported by the U.S. National Science Foundation grant 2034198.