Three-Dimensional Nanometer-Scale Optical Cavities of Indefinite Medium
Abstract
Miniaturization of optical cavities has numerous advantages for enhancing light - matter interaction in quantum optical devices, low-threshold lasers with minimal power consumption, and efficient integration of optoelectronic devices at large scale. However, the realization of a truly nanometer-scale optical cavity is hindered by the diffraction limit of the nature materials. In addition, the scaling of the photon life time with the cavity size significantly reduces the quality factor of small cavities. Here we theoretically present an approach to achieve ultrasmall optical cavities using indefinite medium with hyperbolic dispersion, which allows propagation of electromagnetic waves with wave vectors much larger than those in vacuum enabling extremely small 3D cavity down to (λ/20)³. These cavities exhibit size-independent resonance frequencies and anomalous scaling of quality factors in contrast to the conventional cavities, resulting in nanocavities with both high Q/V[subscript m] ratio and broad bandwidth.
Recommended Citation
J. Yao et al., "Three-Dimensional Nanometer-Scale Optical Cavities of Indefinite Medium," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 28, pp. 11327 - 11331, National Academy of Sciences, Jan 2011.
The definitive version is available at https://doi.org/10.1073/pnas.1104418108
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Metamaterials; Nanophotonics; Nanowires; Plasmonics
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2011 National Academy of Sciences, All rights reserved.
Publication Date
01 Jan 2011