Modeling Nonlinear Dynamics in a Spark Ignition Engine with a Two-Zone Thermodynamic Model
Abstract
Cyclic variability in spark ignition engines under very lean operating conditions is modeled using a zero-dimensional two-zone thermodynamic model, coupled with a turbulent flame speed combustion model. The composition and energy of residual gases are feed-forward mechanisms to influence subsequent cycles. The relatively simple zero-dimensional nature of the model allows many cycles to be simulated in a short period of time, so that the nonlinear dynamical nature of the cycle to cycle variations in heat release can be predicted. Consideration of energy effects in this model, in addition to the conservation of mass already included in previous models, allows prediction of this behavior as both equivalence ratio and ignition timing are varied. Results are benchmarked against data acquired on a single-cylinder CFR engine.
Recommended Citation
B. C. Kaul et al., "Modeling Nonlinear Dynamics in a Spark Ignition Engine with a Two-Zone Thermodynamic Model," Combustion Institute, Jan 2005.
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Combustion; Spark ignition engines; Thermodynamics
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2005 Combustion Institute, All rights reserved.
Publication Date
01 Jan 2005