Impact Characterization of Polyurethane Composites Manufactured Using Vacuum Assisted Resin Transfer Molding

Abstract

Glass fiber reinforced composites are finding various applications due to their high specific stiffness/strength, and corrosion resistance. Vacuum assisted resin transfer molding (VARTM) is one of the commonly used low cost composite manufacturing processes. Polyurethane (PU) resin system has been observed to have better mechanical properties and higher impact strength when compared to conventional resin systems such as polyester and vinyl ester. Until recently, PU could not be used in composite manufacturing processes such as VARTM due to its low pot life. In the present work, a thermoset PU resin systems with longer pot life developed by Bayer MaterialScience is used. Glass fiber reinforced PU composites have been manufactured using one part PU resin system. Performance evaluation was conducted on these composites using tensile, flexure and impact tests. Finite element simulation was conducted to validate the mechanical tests. Results showed that PU composites manufactured using novel thermoset PU resins and VARTM process will have significant applications in infrastructure and automotive industries.

Meeting Name

ASME 2012 International Mechanical Engineering Congress and Exposition

Department(s)

Mechanical and Aerospace Engineering

Second Department

Chemistry

Keywords and Phrases

Composite Materials; Vacuum; Urethrane Elastomers; Resins; Transfer Molding

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 2012

Share

 
COinS