A Neural Network Approach to the Modelling and Analysis of Stereolithography Processes
Abstract
Stereolithography has attracted more attention due to better part build accuracy than other rapid prototyping technologies. However, this build method still limits wider applications due to the unsatisfactory level of dimensional accuracy that remains with the current technology. To improve accuracy and reduce part distortion, understanding the physics involved in the relationship between the operating input parameters and the part dimensional accuracy is prerequisite. In this paper, this causality is identified through a process model obtained via an artificial neural network based upon 140 actual build parts. The network is so constructed that it relates the process input parameters to part dimensional accuracy. The neural network model is found to predict the effects of the input parameters on the accuracy with reasonable accuracy. The prediction performance is discussed in detail for various process parameter ranges.
Recommended Citation
S. H. Lee et al., "A Neural Network Approach to the Modelling and Analysis of Stereolithography Processes," Journal of Engineering Manufacture, Professional Engineering Publishing (Institution of Mechanical Engineers), Jan 2001.
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Neural Network; Process Analysis; Process Model; Rapid Prototyping; Stereolithography Apparatus (SLA); Stereolithography Process
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2001 Professional Engineering Publishing (Institution of Mechanical Engineers), All rights reserved.
Publication Date
01 Jan 2001