Abstract
The Directed Energy Deposition (DED) process has demonstrated high efficiency in manufacturing steel parts with complex geometries and superior capabilities. Understanding the complex interplays of alloy compositions, cooling rates, grain sizes, thermal histories, and mechanical properties remains a significant challenge during DED processing. Interpretable and data-driven modeling has proven effective in tackling this challenge, as machine learning (ML) algorithms continue to advance in capturing complex property structural relationships. However, accurately predicting the prime mechanical properties, including ultimate tensile strength (UTS), yield strength (YS), and hardness value (HV), remains a challenging task due to the complex and non-linear relationships among process parameters, material constituents, grain size, cooling rates, and thermal history. This study introduces an ML model capable of accurately predicting the UTS, YS, and HV of a material dataset comprising 4900 simulation analyses generated using the "JMatPro" software, with input parameters including material compositions, grain size, cooling rates, and temperature, all of which are relevant to DED-processed low-alloy steels. Subsequently, an ML model is developed using the generated dataset. The proposed framework incorporates a physics-based DED-specific feature that leverages "JMatPro" simulations to extract key input parameters such as material composition, grain size, cooling rate, and thermal properties relevant to mechanical behavior. This approach integrates a suite of flexible ML algorithms along with customized evaluation metrics to form a robust foundation to predict mechanical properties. In parallel, explicit data-driven models are constructed using Multivariable Linear Regression (MVLR), Polynomial Regression (PR), Multi-Layer Perceptron Regressor (MLPR), XGBoost, and classification models to provide transparent and analytical insight into the mechanical property predictions of DED-processed low-alloy steels.
Recommended Citation
A. Rahman et al., "Physics-Based Machine Learning Framework for Predicting Structure-Property Relationships in DED-Fabricated Low-Alloy Steels †," Metals, vol. 15, no. 9, article no. 965, MDPI, Sep 2025.
The definitive version is available at https://doi.org/10.3390/met15090965
Department(s)
Mechanical and Aerospace Engineering
Publication Status
Open Access
Keywords and Phrases
DED; explainable AI; low-alloy steels; machine learning; mechanical property prediction; process–structure–property relationships
International Standard Serial Number (ISSN)
2075-4701
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2025 The Authors, All rights reserved.
Creative Commons Licensing

This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Sep 2025

Comments
Missouri University of Science and Technology, Grant None