"Mechanical Properties of 304L Metal Parts Made by Laser-foil-printing " by Chia Hung Hung, Yiyu Shen et al.
 

Mechanical Properties of 304L Metal Parts Made by Laser-foil-printing Process

Abstract

Laser-Foil-Printing (LFP) is a novel laminated object manufacturing process for metal additive manufacturing. It fabricates three-dimensional metal parts by using a dual-laser system to weld and cut metal foils layer by layer. A main advantage of LFP is the higher cooling rate compared to powder-based laser additive manufacturing processes due to the thermal conductivity difference between foil and powder. This study focuses on the mechanical properties of 304L stainless steel parts built by the LFP process. The experimental results indicate that the yield strength and ultimate tensile strength of LFP fabricated 304L SS parts are higher by 9% and 8% in the longitudinal direction, and 24% and 25% in the transverse direction, respectively, in comparison to the parts fabricated by the selective laser melting process. X-ray diffraction and electron backscattered diffraction are used to obtain the lattice structure and the grain size of the fabricated parts.

Department(s)

Mechanical and Aerospace Engineering

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Springer, All rights reserved.

Publication Date

01 Jan 2020

This document is currently not available here.

Share

 
COinS
 
 
 
BESbswy