"Use Of Rotating Membranes For Air-to-liquid Mass Transfer Of Carbon Di" by Peter Ofuje Obidi, Alex A. Lunka et al.
 

Use Of Rotating Membranes For Air-to-liquid Mass Transfer Of Carbon Dioxide To Enhance Algal Growth

Abstract

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO2) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.64 m and loop size of 2 to 5 m, with rotational speeds between 0.0 and 0.78 m/s. CO2 flux increased by up to 45%, achieving maximum uptake rate of 9.14 mg CO2/min/m2 at 100% speed. An empirical model was developed to predict mass transfer rates under varying operational conditions, and model validation showed a strong correlation with experimental data (R2 = 0.9668). Preliminary techno-economic analysis estimated that scaling the system to meet the CO2 demands of a hypothetical 500,000 L raceway, 915 membranes would be required, utilising ∼223 m2 (13.4%) of 1667 m2 surface area, assuming a 0.3 m depth, 12 g/m2/day growth rate, and algae with 50% carbon by weight. The system's energy consumption was measured at 17.1 J/g CO2 captured, representing a 90% reduction in power usage compared to conventional sparging systems, which typically require ∼627 W per 8.3 m2 of membrane surface area. Based solely on electricity costs of $0.10/kW-hr, the cost of capturing atmospheric CO2 was estimated at $1550 per ton. This marks a significant improvement over existing technologies, enhancing commercial viability. Future work will validate the system with Chlorella vulgaris and scale to optimise CO2 capture and reduce costs.

Department(s)

Mechanical and Aerospace Engineering

Keywords and Phrases

Algal growth; carbon dioxide capture; mass transfer; techno-economic analysis; wetted rotating membranes

International Standard Serial Number (ISSN)

1479-487X; 0959-3330

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Taylor and Francis Group; Taylor and Francis, All rights reserved.

Publication Date

01 Jan 2025

Share

 
COinS
 
 
 
BESbswy