Abstract

Controllable patterns of plasma filaments are being explored for reconfigurable metamaterial applications. When operated in a filamentary mode, volume dielectric barrier discharges are known to produce patterns of self-organizing plasma filaments. In this work the presence and intensity of a single filament at a fixed location is controlled by an isolated and independently electrically adjusted needle electrode. Time-averaged normalized light intensity, current, and voltage are measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD, the needle-controlled filament discharges similar to adjacent filaments at low potentials but stops discharging at a maximum potential of 560 V. Control of the needle-controlled filament intensity is demonstrated by making voltage changes over the range of 7% of the driving voltage. The required potential difference for fully turning on and off the filament is 100 V and is not affected by the applied DBD driving voltage.

Department(s)

Mechanical and Aerospace Engineering

Publication Status

Full Access

International Standard Book Number (ISBN)

978-162410393-3

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Institute of Aeronautics and Astronautics, All rights reserved.

Publication Date

01 Jan 2016

Share

 
COinS