Kinetic Simulations of Dust Grain Charging in Experimental Plasma Conditions

Abstract

This paper presents fully-kinetic numerical investigations of the charging of spherical and irregular dust grains in the OML sheath regime and a stationary experimental plasma environment utilizing the Dusty Parallel Immersed-Finite-Element Particle-in-Cell (PIFE-PIC-D) framework. The simulations account for surface charging of the dust grains immersed in an stationary plasma environment. PIFE-PIC-D explicitly resolves the geometrical and material properties (permittivity) of each individual dust grain. The charge collection over time of each dust grain is investigated with varying size, irregularity, number of grains, spacing between dust grains, and permittivity. The charging behavior of a dust cluster is estimated by calculating its electron Debye length edge-to-edge separation to offer valuable insights into a dust cluster's general charge dynamics. Lastly, unlike prior studies that focused solely on either fully conducting spheres or perfectly dielectric spheres, this work explores a more comprehensive range of permittivities for irregular dust grain aggregates.

Department(s)

Mechanical and Aerospace Engineering

Comments

National Science Foundation, Grant DMS-2111039

Keywords and Phrases

Dust charging; Dusty plasma; Kinetic simulations

International Standard Serial Number (ISSN)

1090-2643; 0019-1035

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Elsevier, All rights reserved.

Publication Date

15 Sep 2024

Share

 
COinS