Abstract
In the paper, we conduct direct numerical simulations (DNS) to investigate the effect of turbulence-radiation interaction (TRI) in hypersonic turbulent boundary layers, representative of the Orion crew exploration vehicle (CEV) at peak heating condition during reentry. The radiative transfer equation (RTE) is solved using the tangent slab approximation. 1 The RTE solver is line-by-line (LBL) accurate, making use of a developed efficient spectral database 2 for spectral modeling. A multi-group full-spectrum correlated-k-distribution (FSCK) method 3 is used to reduce the number of RTE evaluations while preserving LBL accuracy. A nondimensional governing parameter to measure the significance of TRI is proposed, and the DNS fields with and without radiation coupling are used to assess TRI. Both the uncoupled and coupled results show that there is no sizable interaction between turbulence and radiation at the hypersonic environment under investigation. An explanation of why the intensity of TRI in the hypersonic boundary layer is smaller than that in many combustion flows is provided. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.
Recommended Citation
L. Duan et al., "Study Of Turbulence-radiation Interaction In Hypersonic Turbulent Boundary Layers," 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, article no. AIAA-2011-749, American Institute of Aeronautics and Astronautics, Jan 2011.
The definitive version is available at https://doi.org/10.2514/6.2011-749
Department(s)
Mechanical and Aerospace Engineering
Publication Status
Full Access
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 American Institute of Aeronautics and Astronautics, All rights reserved.
Publication Date
01 Jan 2011