Wavelength-tunable Infrared Chiral Metasurfaces With Phase-change Materials

Abstract

Optical phase-change materials exhibit tunable permittivity and switching properties during phase transition, which offers the possibility of dynamic control of optical devices. Here, a wavelength-tunable infrared chiral metasurface integrated with phase-change material GST-225 is demonstrated with the designed unit cell of parallelogram-shaped resonator. By varying the baking time at a temperature above the phase transition temperature of GST-225, the resonance wavelength of the chiral metasurface is tuned in the wavelength range of 2.33 µm to 2.58 µm, while the circular dichroism in absorption is maintained around 0.44. The chiroptical response of the designed metasurface is revealed by analyzing the electromagnetic field and displacement current distributions under left- and right-handed circularly polarized (LCP and RCP) light illumination. Moreover, the photothermal effect is simulated to investigate the large temperature difference in the chiral metasurface under LCP and RCP illumination, which allows for the possibility of circular polarization-controlled phase transition. The presented chiral metasurfaces with phase-change materials offer the potential to facilitate promising applications in the infrared regime, such as chiral thermal switching, infrared imaging, and tunable chiral photonics.

Department(s)

Mechanical and Aerospace Engineering

Comments

U.S. Department of Energy, Grant DE-AC02-06CH11357

International Standard Serial Number (ISSN)

1094-4087

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 Optica, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

19 Jun 2023

PubMed ID

37381219

This document is currently not available here.

Share

 
COinS