Abstract

Plane strain thermomechanical deformations of a viscoplastic body are studied with the objective of analyzing the localization of deformation into narrow bands of intense straining. Two different loadings, namely, the top and bottom surfaces subjected to a prescribed tangential velocity, and these two surfaces subjected to a preassigned normal velocity, are considered. In each case a material defect, flaw, or inhomogeneity is modeled by introducing a temperature bump at the center of the specimen. The solution of the initial boundary value problem by the Galerkin-Adams method reveals that the deformation eventually localizes into a narrow band aligned along the direction of the maximum shearing strain. For both problems, bands of intense shearing appear to diffuse out from the center of the specimen. © 1989 by ASME.

Department(s)

Mechanical and Aerospace Engineering

International Standard Serial Number (ISSN)

1528-9036; 0021-8936

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 American Society of Mechanical Engineers, All rights reserved.

Publication Date

01 Jan 1989

Share

 
COinS