Abstract

Recent published work in the area of magnetic refrigeration reports on its potential for greater efficiency and high reliability. This paper presents an exergy analysis of a three-stage active magnetic regenerative (AMR) hydrogen liquefier which cools a hydrogen gas stream at 77 K and 1 atm to hydrogen liquid at 20 K. Ortho - para conversion of hydrogen is accomplished in a heat exchanger employing a 10 atm helium fluid that cycles in the refrigerator. The performance of the system is described in terms of the cooling capacity and exergy losses as functions of the magnetic material type, magnetic bed size and temperature, helium mass flow rate, ratio of Iso field and adiabatic process times, and the operating frequency. © 1993.

Department(s)

Mechanical and Aerospace Engineering

Comments

University of Miami, Grant None

Keywords and Phrases

hydrogen; liquefiers; magnetic refrigeration

International Standard Serial Number (ISSN)

0011-2275

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Elsevier, All rights reserved.

Publication Date

01 Jan 1993

Share

 
COinS