Abstract

Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, which was attributed to the random grain orientation observed on both the planes. However, the average micro-hardness of the DMLS-fabricated 316L stainless steel in this contribution was approximately 25% higher than that of the as-cast one.

Department(s)

Mechanical and Aerospace Engineering

Comments

Air Force Research Laboratory, Grant 4047

Keywords and Phrases

Additive manufacturing; DMLS; Hardness; Microstructure; Stainless steel

International Standard Serial Number (ISSN)

1433-3015; 0268-3768

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Springer, All rights reserved.

Publication Date

01 Apr 2018

Share

 
COinS