Abstract
The Bulk Thermal Conductivity of Stillinger-Weber (SW) Wurtzite GaN in the [0001] Direction at a Temperature of 300 K is Calculated using Equilibrium Molecular Dynamics (EMD), Non-Equilibrium MD (NEMD), and Lattice Dynamics (LD) Methods. While the NEMD Method Predicts a Thermal Conductivity of 166 ± 11 W/m·K, Both the EMD and LD Methods Predict Thermal Conductivities that Are an Order of Magnitude Greater. We Attribute the Discrepancy to Significant Contributions to Thermal Conductivity from Long-Mean Free Path Phonons. We Propose that the Grüneisen Parameter for Low-Frequency Phonons is a Good Predictor of the Severity of the Size Effects in NEMD Thermal Conductivity Prediction. for Weakly Anharmonic Crystals Characterized by Small Grüneisen Parameters, Accurate Determination of Thermal Conductivity by NEMD is Computationally Impractical. the Simulation Results Also Indicate the GaN SW Potential, Which Was Originally Developed for Studying the Atomic-Level Structure of Dislocations, is Not Suitable for Prediction of its Thermal Conductivity.
Recommended Citation
Z. Liang et al., "Molecular Simulations and Lattice Dynamics Determination of Stillinger-Weber GaN Thermal Conductivity," Journal of Applied Physics, vol. 118, no. 12, article no. 125104, American Institute of Physics, Sep 2015.
The definitive version is available at https://doi.org/10.1063/1.4931673
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
1089-7550; 0021-8979
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 American Institute of Physics, All rights reserved.
Publication Date
28 Sep 2015