Abstract

Due to the High Surface-To-Volume Ratio of Nanostructured Components in Microelectronics and Other Advanced Devices, the Thermal Resistance at Material Interfaces Can Strongly Affect the overall Thermal Behavior in These Devices. Therefore, the Thermal Boundary Resistance, R, Must Be Taken into Account in the Thermal Analysis of Nanoscale Structures and Devices. This Article is a Tutorial on the Determination of R and the Analysis of Interfacial Thermal Transport Via Molecular Dynamics (MD) Simulations. in Addition to Reviewing the Commonly Used Equilibrium and Non-Equilibrium MD Models for the Determination of R, We Also Discuss Several MD Simulation Methods Which Can Be Used to Understand Interfacial Thermal Transport Behavior. to Illustrate How These MD Models Work for Various Interfaces, We Will Show Several Examples of MD Simulation Results on Thermal Transport Across Solid-Solid, Solid-Liquid, and Solid-Gas Interfaces. the Advantages and Drawbacks of a Few Other MD Models Such as Approach-To-Equilibrium MD and First-Principles MD Are Also Discussed.

Department(s)

Mechanical and Aerospace Engineering

Comments

University of South Carolina, Grant None

International Standard Serial Number (ISSN)

1089-7550; 0021-8979

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 American Institute of Physics, All rights reserved.

Publication Date

21 May 2018

Share

 
COinS