In-Situ Infrared Thermographic Inspection for Local Powder Layer Thickness Measurement in Laser Powder Bed Fusion

Abstract

The laser powder bed fusion (LPBF) process is strongly influenced by the characteristics of the powder layer, including its thickness and thermal transport properties. This paper investigates in-situ characterization of the powder layer using thermographic inspection. A thermal camera monitors the temperature history of the powder surface immediately after a layer of new powder is deposited by the recoating system. During this process, thermal energy diffuses from the underlying solid part, eventually raising the temperature of the above powder layer. Guided by 1D modeling of this heat-up process, experiments show how the parameterized thermal history can be correlated with powder layer thickness and its thermal conductivity. A neural network, based on the parameterized thermal history, further improves the correlation after training. It is used to predict the part distortion for an unsupported structure. This method detects serious part distortion several layers before the part breaks through the powder layer and interacts with the recoater. This approach can be automated to prevent catastrophic recoater crashes or abrasion of soft wipers and has the potential to monitor local properties of the powder layer in-situ.

Department(s)

Mechanical and Aerospace Engineering

Comments

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0007613. The financial support is through the Clean Energy Smart Manufacturing Innovation Institute (CESMII), with Honeywell being the primary recipient of this award.

Keywords and Phrases

Additive Manufacturing; Infrared Thermography; Laser Powder Bed Fusion (LPBF); Neural Network; Powder Thickness; Recoater Crash

International Standard Serial Number (ISSN)

2214-8604

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2022 Elsevier, All rights reserved.

Publication Date

01 Jul 2022

Share

 
COinS