Abstract
Glass is a critical material for many scientific and engineering applications including optics, communications, electronics, and hermetic seals. Despite this technological relevance, there has been minimal research toward Additive Manufacturing (AM) of glass, particularly optically transparent glass. Additive Manufacturing of transparent glass offers potential advantages for lower processing costs for small production volumes, increased design freedom, and the ability to locally vary the optical properties of the part. Compared to common soda lime glass, fused quartz is better for AM since it has lower thermal expansion and higher index homogeneity. This paper presents a study of additive manufacturing of transparent fused quartz by a filament fed process. A CW CO2 laser (10.6 µm) is used to melt glass filaments layer by layer. The laser couples to phononic modes in the glass and is well absorbed. The beam and melt pool are stationary while the work piece is scanned using a standard lab motion system. Representative parts are built to explore the effects of variable laser power on the properties of printed fused quartz. During printing the incandescent emission from the melt pool is measured using a spectrometer. This permits process monitoring and identifies potential chemical changes in the glass during printing. After deposition, the printed parts are polished and the transmission measured to calculate the absorption/scattering coefficient. Finally, a low-order thermal analysis is presented and correlated to experimental results, including an energy balance and finite volume analysis using Fluent. These results suggest that optical quality fused quartz parts with low absorption and high index of refraction uniformity may be printed using the filament-fed process.
Recommended Citation
J. Luo et al., "Solid Freeform Fabrication of Transparent Fused Quartz using a Filament Fed Process," Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium (2015, Austin, TX), pp. 122 - 133, University of Texas at Austin, Aug 2015.
Meeting Name
26th Annual International Solid Freeform Fabrication Symposium -- An Additive Manufacturing Conference, SFF 2015 (2015: Aug. 10-12, Austin, TX)
Department(s)
Mechanical and Aerospace Engineering
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Publication Date
12 Aug 2015