Abstract

Fused pellet modeling (FPM) is an important method in additive manufacturing technology, where granular material is used instead of filaments. In FPM, prototypes are constructed by the sequential deposition of material layers. As the size of the part increases, the problem of long build times and part deformation becomes critical. In this paper, methods for eliminating the void density during deposition and accuracy control principles for large scale FPM processes are studied. By analyzing the ab initio principles of this process, a mini extruder with variable pitch and progressive diameter screw for the large scale fused deposition is proposed. Based on polymer extrusion theory and non-Newtonian fluid properties, each of the design parameters are analyzed, such as the length of different function sections of screw, die shape of extruder nozzle, and the material properties. According to these analysis results, an extrusion process simulation for controlling the filament shape is carried out with multi-physics modeling software and proved the FPM could increase the building efficiency and deposition quality for large size parts.

Meeting Name

26th Annual International Solid Freeform Fabrication Symposium -- An Additive Manufacturing Conference, SFF 2015 (2015: Aug. 10-12, Austin, TX)

Department(s)

Mechanical and Aerospace Engineering

Comments

This research was supported by Laser Aided Manufacturing Processes (LAMP) Laboratory at Missouri University of Science and Technology. Their support is greatly appreciated.

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Publication Date

12 Aug 2015

Included in

Manufacturing Commons

Share

 
COinS