Abstract

Directed energy deposition (DED) has been widely used for component repair. In the repair process, the surface defects are machined to a groove or slot and then refilled. The sidewall inclination angle of the groove geometry has been recognized to have a considerable impact on the mechanical properties of repaired parts. The objective of this work was to investigate the feasibility of repairing various V-shaped defects with both experiments and modeling. At first, the repair volume was defined by scanning the defective zone. Then, the repair volume was sliced to generate the repair toolpath. After that, the DED process was used to deposit Ti6Al4V powder on the damaged plates with two different slot geometries. Mechanical properties of the repaired parts were evaluated by microstructure analysis and tensile test. Testing of the repaired parts showed excellent bonding between the deposits and base materials with the triangular slot repair. 3D finite element analysis (FEA) models based on sequentially coupled thermo-mechanical field analysis were developed to simulate the corresponding repair process. Thermal histories of the substrate on the repair sample were measured to calibrate the 3D coupled thermo-mechanical model. The temperature measurements showed very good verification with the predicted temperature results. After that, the validated model was used to predict the residual stresses and distortions in the parts. Predicted deformation and stress results can guide the evaluation of the repair quality.

Department(s)

Mechanical and Aerospace Engineering

Research Center/Lab(s)

Intelligent Systems Center

Keywords and Phrases

Additive manufacturing; Component repair; Damage; Deformation; Directed energy deposition; Residual stress

International Standard Serial Number (ISSN)

1996-1944

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2021 The Authors, All rights reserved.

Publication Date

02 Mar 2021

Share

 
COinS