Spontaneous Singularity Formation in Converging Cylindrical Shock Waves
Abstract
We develop a nonlinear, Fourier-based analysis of the evolution of a perturbed, converging cylindrical strong shock using the approximate method of geometrical shock dynamics (GSD). This predicts that a singularity in the shock-shape geometry, corresponding to a change in Fourier-coefficient decay from exponential to algebraic, is guaranteed to form prior to the time of shock impact at the origin, for arbitrarily small, finite initial perturbation amplitude. Specifically for an azimuthally periodic Mach-number perturbation on an initially circular shock with integer mode number q and amplitude proportional to ε ≪ 1, a singularity in the shock geometry forms at a mean shock radius Ru,c ∼(q2ε)-1/ b1 where b1 (γ) < 0 is a derived constant and γ the ratio of specific heats. This requires q2ε ≪ 1, q ≫ 1. The constant of proportionality is obtained as a function of γ and is independent of the initial shock Mach number M0. Singularity formation corresponds to the transition from a smooth perturbation to a faceted polygonal form. Results are qualitatively verified by a numerical GSD comparison.
Recommended Citation
W. Mostert et al., "Spontaneous Singularity Formation in Converging Cylindrical Shock Waves," Physical Review Fluids, vol. 3, no. 7, American Physical Society (APS), Jul 2018.
The definitive version is available at https://doi.org/10.1103/PhysRevFluids.3.071401
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Compressible flows; Shock waves; Structural properties; Pressure effects
International Standard Serial Number (ISSN)
2469-990X
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 American Physical Society (APS), All rights reserved.
Publication Date
23 Jul 2018