Abstract
High-entropy alloys (HEAs) are becoming new hot spots in the metallic materials community, which are defined to contain equiatomic or close-to-equiatomic compositions. HEAs can possess many interesting mechanical properties, and in particular, they have the great potential to be used as coating materials requiring high hardness and wear resistance. In this study, the feasibility of fabrication AlₓCrCuFeNi₂ (x=0,0.75) HEAs was investigated via laser metal deposition from elemental powders. The microstructure, phase structure, and hardness were studied by an optical microscope, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), electron backscatter diffraction (EBSD) and Vickers hardness tester. The bonding between the AlₓCrCuFeNi₂ (x = 0,0.75) HEAs and AISI 304 stainless steel were good combinations. The Al₀.₇₅CrCuFeNi₂ alloy consisted of columnar dendritic microstructure with Al/Ni enrichment in the dendritic regions. The phase structure of the AlₓCrCuFeNi₂ (x = 0,0.75) HEAs were face center cubic structure as identified by EBSD. Vickers hardness results indicate that the average hardness of CrCuFeNi₂ HEA was 175 HV. With the addition of aluminium, the Vickers hardness of Al0.75CrCuFeNi2 HEA increased to 285 HV.
Recommended Citation
W. Cui et al., "Fabrication and Characterization of AlₓCrCuFeNi₂ High-Entropy Alloys Coatings by Laser Metal Deposition," Procedia Manufacturing, vol. 39, pp. 509 - 518, Elsevier B.V., Aug 2019.
The definitive version is available at https://doi.org/10.1016/j.promfg.2020.01.408
Meeting Name
25th International Conference on Production Research Manufacturing Innovation: Cyber Physical Manufacturing, ICPR 2019 (2020: Aug. 9-14, Chicago, IL)
Department(s)
Mechanical and Aerospace Engineering
Research Center/Lab(s)
Center for Research in Energy and Environment (CREE)
Keywords and Phrases
Additive manufacturing; Elemental powder; High-entropy alloys; Laser metal deposition; Microstructure
International Standard Serial Number (ISSN)
2351-9789
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2019 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Publication Date
01 Aug 2019