Vision-Based, Terrain-Aided Navigation with Decentralized Fusion and Finite Set Statistics
Abstract
Terrain-related information, in the form of features extracted from images, presents a rich data source that can be harvested to facilitate drastic improvements in navigation when conventional data sources, such as GPS, are not available. Conventional implementation of such data types requires image correlation techniques that interrupt streamlined transmission of statistics through a navigation filter, oftentimes leading to time-wise correlations that are erroneously ignored. This paper proposes leveraging finite set statistics to recast the terrain feature data into a simultaneous localization and mapping problem. Decentralized data fusion is employed to augment a standard extended Kalman filter-based navigation with the terrain data. Theoretical results are supported with a simulated descent to landing navigation scenario that demonstrates the improvements offered by augmenting standard navigation with terrain aiding.
Recommended Citation
J. S. McCabe and K. J. DeMars, "Vision-Based, Terrain-Aided Navigation with Decentralized Fusion and Finite Set Statistics," Navigation, Journal of the Institute of Navigation, vol. 66, no. 3, pp. 537 - 557, Wiley-Blackwell, Aug 2019.
The definitive version is available at https://doi.org/10.1002/navi.320
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Data fusion; Image enhancement; Kalman filters; Landforms; Set theory, Data-sources; Decentralized data fusion; Finite set statistics; Image correlation techniques; Navigation filters; Simultaneous localization and mapping problems; Terrain aided navigation; Terrain features, Navigation
International Standard Serial Number (ISSN)
0028-1522
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2019 Wiley-Blackwell, All rights reserved.
Publication Date
01 Aug 2019