Investigation of Sandwich Composite Failure under Three-Point Bending: Simulation and Experimental Validation
Abstract
A sandwich structure consists of a two thin and strong facesheets, bonded to a thick lightweight core material. The mechanical response of a sandwich structure depends on the properties of its constituents. A numerical model and experimental validation of the three-point bending test of sandwich composites are presented in this study. The core material is aluminum honeycomb. The facesheets are made of IM7/Cycom5320-1, which is a carbon fiber/epoxy prepreg system. A comprehensive model of the failure under flexural loading was developed. Facesheet failure was modeled using Hashin’s failure criteria. A detailed meso-scale model of the honeycomb core was included in the model. The experiments indicated that failure initiation was due to local buckling in the honeycomb core. Failure propagation was in the form of core failure, facesheet compressive failure, and interlaminar failure. The developed meso-scale model was able to accurately simulate failure initiation and propagation in the composite sandwich structure. The effect of elevated temperature on the three-point bending behavior was studied numerically as well as experimentally. An increase in test temperature to 100°C resulted in a drop of 9.2% in flexural strength, which was also predicted by the numerical model.
Recommended Citation
S. Anandan et al., "Investigation of Sandwich Composite Failure under Three-Point Bending: Simulation and Experimental Validation," Journal of Sandwich Structures and Materials, SAGE, Jul 2018.
The definitive version is available at https://doi.org/10.1177/1099636218791162
Department(s)
Mechanical and Aerospace Engineering
Research Center/Lab(s)
Intelligent Systems Center
Second Research Center/Lab
Center for High Performance Computing Research
Keywords and Phrases
Sandwich Composite; Meso-Scale Modeling; Finite Element Method
International Standard Serial Number (ISSN)
1099-6362; 1530-7972
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 SAGE, All rights reserved.
Publication Date
30 Jul 2018