Abstract
This work describes a process by which zirconium diboride (ZrB2) parts may be fabricated using the Ceramic On-Demand Extrusion (CODE) process. An oxide-carbide-nitride system consisting of ceramic powders and pre-ceramic organics, designed to yield ZrB2 after reaction sintering, has been developed to produce an aqueous-based extrudate for subsequent processing in the CODE system. Pressurelessly sintered test specimens containing 1 wt% PVA binder achieve high relative density ≥ 99%. The viscoelastic response of the extrudate was characterized via spindle rheometry with a small sample adapter. Batches with 1 wt% PVA and 0.5 wt% Methocel show strong shear thinning characteristic, under shear rates of 1-28 s-1. XRD and SEM were utilized for microstructural analysis to determine phase development and microstructural morphology.
Recommended Citation
D. McMillen et al., "Designed Extrudate for Additive Manufacturing of Zirconium Diboride by Ceramic On-Demand Extrusion," Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium (2016, Austin, TX), pp. 929 - 938, University of Texas at Austin, Aug 2016.
Meeting Name
27th Annual International Solid Freeform Fabrication Symposium -- An Additive Manufacturing Conference (2016: Aug. 8-10, Austin, TX)
Department(s)
Mechanical and Aerospace Engineering
Second Department
Materials Science and Engineering
Research Center/Lab(s)
Intelligent Systems Center
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Publication Date
10 Aug 2016