Fusion of Multiple Terrain-Based Sensors for Descent-To-Landing Navigation
Abstract
This paper investigates the ability of a navigation filter to process multiple terrain-based sensors, such as slant-range, slant-speed, and terrain relative navigation sensors, during a descent-to-landing scenario to estimate the state of the landing vehicle. The filtering technique leveraged is based upon a factorized form of the multiplicative extended Kalman filter, and terrain-based measurements are fused with star camera and inertial measurement unit measurements to estimate position, velocity, and attitude of the landing vehicle. Monte Carlo simulations of the filter are carried out to assess the performance of the navigation filter along a lunar descent trajectory. It is found that the presented navigation filter can successfully process multiple terrain-based sensor outputs and that including terrain information can improve navigation precision.
Recommended Citation
K. C. Ward et al., "Fusion of Multiple Terrain-Based Sensors for Descent-To-Landing Navigation," Proceedings of the AIAA Scitech 2019 Forum (2019, San Diego, CA), American Institute of Aeronautics and Astronautics (AIAA), Jan 2019.
The definitive version is available at https://doi.org/10.2514/6.2019-0922
Meeting Name
AIAA Scitech Forum, 2019 (2019: Jan. 7-11, San Diego, CA)
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Aviation; Intelligent systems; Landforms; Landing; Monte Carlo methods; Navigation, Descent trajectories; Filtering technique; Inertial measurement unit; Multiplicative extended kalman filters; Navigation filters; Navigation precision; Relative navigation; Sensor output, Kalman filters
International Standard Book Number (ISBN)
978-162410578-4
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2019 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.
Publication Date
01 Jan 2019