Abstract
The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from -1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states arbitrarily for optical vortex beams will lead to many new applications in optical manipulation, quantum optics, and optical communication.
Recommended Citation
Y. Zhang et al., "Orbital Angular Momentum Transformation of Optical Vortex with Aluminum Metasurfaces," Scientific Reports, vol. 9, no. 1, Nature Publishing Group, Dec 2019.
The definitive version is available at https://doi.org/10.1038/s41598-019-45727-6
Department(s)
Mechanical and Aerospace Engineering
Research Center/Lab(s)
Intelligent Systems Center
Second Research Center/Lab
Center for Research in Energy and Environment (CREE)
International Standard Serial Number (ISSN)
2045-2322
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2019 The Author(s), All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Dec 2019
PubMed ID
31235894
Comments
The authors acknowledge support from the Office of Naval Research under Grant No. N00014-16-1-2408, and the National Science Foundation under Grant No. ECCS-1653032 and DMR-1552871.