Fundamental Study of the Bulge Structure Generated in Laser Polishing Process
Abstract
Laser polishing is an innovative part-finishing process to reduce the surface roughness by melting a thin layer of material on the part surface. The polished surface quality is influenced by many factors including initial surface condition, properties of material, laser power, scan speed, focal offset, beam shape, percentage of overlap, etc. In addition to removing the original asperities, the laser polishing process may also introduce new asperities including bulges, ripples, undercuts, etc. In this paper, a fundamental study is carried out on Ti-6Al-4 V alloy slabs to investigate the formation of bulge structure and the influence of processing parameters (the laser power, scan speed, focal offset and successive track displacement) on the bulge structure through parametric analyses. The formation of bulge structure is mainly caused by the phase transition in the heat-affected zone and the mass transport of the fluid flow in melting pool. The parameters of the laser power, scan speed and focal offset have significant influences on the width and depth of polished tracks, the amplitude of bulge structures and the relative volume expansion by the bulge structures. Two different melting modes and a maximum track width can be found in the parametric study of focal offset. The scan speed has a significant influence on the relative volume expansion at low speeds. By reducing the successive track displacement, the overlapped bulge amplitude can be reduced rapidly, but the finer solidification-induced surface structure would get intensified.
Recommended Citation
C. Chen and H. Tsai, "Fundamental Study of the Bulge Structure Generated in Laser Polishing Process," Optics and Lasers in Engineering, vol. 107, pp. 54 - 61, Elsevier Ltd, Aug 2018.
The definitive version is available at https://doi.org/10.1016/j.optlaseng.2018.03.006
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Additive manufacturing; Bulge structure; Laser macro polishing; Laser polishing; Surface roughness
International Standard Serial Number (ISSN)
0143-8166
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 Elsevier Ltd, All rights reserved.
Publication Date
01 Aug 2018
Comments
The authors gratefully acknowledge the financial support from the Department of Energy (Grant No. DE-FE0012272).