A Cost Modeling Approach for Entry Systems Analysis of Human Mars Missions

Abstract

Cost is one of the biggest obstacles to sending humans to Mars. However, spacecraft costs are typically not estimated until after the preliminary vehicle and mission concepts have been designed. By automating the cost estimation process, the effect of any change in vehicle or mission design on the mission cost can be determined more efficiently. This paper describes an extension to the tool Systems Analysis for Planetary Entry, Descent, and Landing which integrates the cost modeling software System Estimation and Evaluation of Resources-Hardware with a number of systems analysis tools. This new method is used to analyze several tradespaces of an entry vehicle for human Mars missions utilizing a Hypersonic Inflatable Aerodynamic Decelerator and provide preliminary results. Key findings include quantifying how ballistic coefficient, main engine specific impulse, and thrust to weight ratio affect the cost of the vehicle and how the payload per lander and number of landers affects the cost of a campaign to Mars.

Meeting Name

AIAA Space and Astronautics Forum and Exposition, 2018 (2018: Sep. 17-19, Orlando, FL)

Department(s)

Mechanical and Aerospace Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Keywords and Phrases

Cost estimating; Hypersonic vehicles; Life support systems (spacecraft); Martian surface analysis; Space flight; Systems analysis, Aerodynamic decelerators; Ballistic coefficient; Cost estimations; Human mars mission; Mission concepts; Planetary entry; Specific impulse; Thrust-to-weight ratio, Cost benefit analysis

International Standard Book Number (ISBN)

978-162410575-3

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2018 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.

Publication Date

01 Sep 2018

Share

 
COinS