Analysis of a Fixed-Guided Compliant Beam with an Inflection Point Using the Pseudo-Rigid-Body Model Concept
Abstract
This paper provides an efficient method of analysis for a fixed-guided compliant beam with an inflection point, subjected to beam end load or displacement boundary conditions, or a combination thereof. To enable this, such a beam is modeled as a pair of well-established pseudo-rigid-body models (PRBMs) for fixed-free compliant beam segments. The analysis procedure relies on the properties of inflection in developing the necessary set of parametric, static equilibrium and compatibility equations for solution. The paper further discusses the multiplicity of possible solutions, including displacement configurations, for any two specified beam end displacement boundary conditions, depending on the locations and types of the effecting loads on the beam to meet these boundary conditions. A unique solution may exist when a third beam end displacement boundary condition is specified; however, this selection is not unconditional. A concept of characteristic deflection domain is proposed to assist with the selection of the third boundary condition to yield a realistic solution. The analysis method is also used to synthesize a simple, fully compliant mechanism utilizing the fixed-guided compliant segments.
Recommended Citation
A. Midha et al., "Analysis of a Fixed-Guided Compliant Beam with an Inflection Point Using the Pseudo-Rigid-Body Model Concept," Journal of Mechanisms and Robotics, vol. 7, no. 3, American Society of Mechanical Engineers (ASME), Aug 2015.
The definitive version is available at https://doi.org/10.1115/1.4028131
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Compliant mechanisms; Composite micromechanics; Mechanisms; Rigid structures; Characteristic deflection; Compatibility equation; Displacement boundary conditions; Fully compliant mechanism; Inflection points; Method of analysis; Pseudo-rigid body models; Static equilibrium; Boundary conditions
International Standard Serial Number (ISSN)
1942-4302; 1942-4310
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Aug 2015