Powder-Based Additive Manufacturing of Li-Ion Batteries and Micropowder Mixing Characteristics

Abstract

Lithium ion battery electrodes were manufactured using a new additive manufacturing process based on dry powders. By using dry powder based process, solvent and drying process used in conventional battery process can be removed which allows large-scale Li-ion battery production be more economically viable in markets such as automotive energy storage systems. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. By measuring the surface energies of various powders and numerical simulation of powder mixing, the powder mixing and binder distribution, which plays a vital role in determining the quality of additive manufactured battery electrodes, have been predicted and compared favorably with experiments.

Meeting Name

12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing (2017: Jun. 4-8, Los Angeles, CA)

Department(s)

Mechanical and Aerospace Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Comments

This work is financially supported by NSF CMMI-1462343 and CMMI-1462321.

Keywords and Phrases

Additive Manufacturing; Batteries; Binder Distribution; Discrete Element Simulation; Powder Mixing

International Standard Book Number (ISBN)

978-079185073-2

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2017 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jun 2017

Share

 
COinS