Smoothing for Nonlinear Multi-Target Filters with Gaussian Mixture Approximations

Abstract

This paper investigates a smoothing method using the nonlinear Gaussian mixture probability hypothesis density (GMPHD) filter for use in multi-target tracking. This specific smoother is developed using backwards recursion operations in order to improve upon the preexisting forward filtering solution. The observational and dynamical models considered are nonlinear in nature, creating complexities not present in previous works that developed multi-target smoothers for linear dynamics and measurements. The nonlinear GMPHD smoothing solution is compared to established smoothing solutions to test the validity of the derived algorithms, and Gaussian mixture splitting is implemented to help address common operational problems experienced by the smoother.

Meeting Name

Space Flight Mechanics Meeting, 2018 (2018: Jan. 8-12, Kissimmee, FL)

Department(s)

Mechanical and Aerospace Engineering

Keywords and Phrases

Bandpass filters; Gaussian distribution; Mechanics; Probability density function; Space flight, Dynamical model; Forward-filtering; Gaussian mixtures; Linear dynamics; Multi-target tracking; Nonlinear gaussian; Operational problems; Smoothing methods, Target tracking

International Standard Book Number (ISBN)

978-162410533-3

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2018 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.

Publication Date

01 Jan 2018

Share

 
COinS