Modeling of Mass Flow Behavior of Hot Rolled Low Alloy Steel based on Combined Johnson-Cook and Zerilli-Armstrong Model

Abstract

Accuracy and reliability of numerical simulation of hot rolling processes are dependent on a suitable material model, which describes metal flow behavior. In the present study, Gleeble hot compression tests were carried out at high temperatures up to 1300 °C and varying strain rates for a medium carbon micro-alloyed steel. Based on experimental results, a Johnson-Cook model (JC) and a Zerilli-Armstrong (ZA) model were developed and exhibited limitation in characterizing complex viscoplastic behavior. A combined JC and ZA model was introduced and calibrated through investigation of strain hardening, and the coupled effect of temperature and strain rate. Results showed that the combined JC and ZA model demonstrated better agreement with experimental data. An explicit subroutine of the proposed material model was coded and implemented into a finite element model simulating the industrial hot rolling. The simulated rolling torque was in good agreement with experimental data. Plastic strain and stress distributions were recorded to investigate nonlinear mass flow behavior of the steel bar. Results showed that the maximum equivalent plastic strain occurred at 45° and 135° areas of the cross section. Stress increased with decreasing temperature, and the corresponding rolling torque was also increased. Due to the extent of plastic deformation, rolling speed had limited influence on the internal stress of the bar, but the relative rolling torque was increased due to strain rate hardening.

Department(s)

Mechanical and Aerospace Engineering

Second Department

Materials Science and Engineering

Research Center/Lab(s)

Intelligent Systems Center

Second Research Center/Lab

Peaslee Steel Manufacturing Research Center

Third Research Center/Lab

Center for High Performance Computing Research

International Standard Serial Number (ISSN)

0022-2461

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2017 Springer

Publication Date

01 Jan 2017

Share

 
COinS