Multiple-Object Space Surveillance Tracking Using Finite-Set Statistics
Abstract
The dynamic tracking of objects is, in general, concerned with state estimation using imperfect data. Multiple object tracking adds the difficulty of encountering unknown associations between the collected data and the objects. State estimation of objects necessitates the prediction of uncertainty through nonlinear (in the general case) dynamical systems and the processing of nonlinear (in the general case) measurement data in order to provide corrections that refine the system uncertainty, where the uncertainty may be non-Gaussian in nature. The sensors, which provide the measurement data, are imperfect with possible misdetections, false alarms, and noise-affected data. The resulting measurements are inherently unassociated upon reception. In this paper, a Bayesian method for tracking an arbitrary, but known, number of objects is developed. The method is based on finite-set statistics coupled with finite mixture model representations of the multiobject probability density function. Instead of relying on first-moment approximations, such as the probability hypothesis density filter, to the full multiobject Bayesian posterior, as is often done for multiobject filtering, the proposed method operates directly on the exact Bayesian posterior. Results are presented for application of the method to the problem of tracking multiple space objects using synthetic line-of-sight data.
Recommended Citation
K. J. DeMars et al., "Multiple-Object Space Surveillance Tracking Using Finite-Set Statistics," Journal of Guidance, Control, and Dynamics, vol. 38, no. 9, pp. 1741 - 1756, American Institute of Aeronautics and Astronautics (AIAA), Sep 2015.
The definitive version is available at https://doi.org/10.2514/1.G000987
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Bayesian networks; Dynamical systems; Set theory; Space surveillance; State estimation; Uncertainty analysis; Dynamic tracking; Finite mixture modeling; Finite set statistics; Multi-object filtering; Multiple object tracking; Probability hypothesis density filter; Synthetic line of sights; System uncertainties; Probability density function
International Standard Serial Number (ISSN)
0731-5090
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.
Publication Date
01 Sep 2015