Abstract

We compute the interfacial free energy of a silicon system in contact with flat and structured walls by molecular dynamics simulation. The thermodynamics integration method, previously applied to Lennard-Jones potentials [R. Benjamin and J. Horbach, J. Chem. Phys. 137, 044707 (2012)], has been extended and implemented in Tersoff potentials with two-body and three-body interactions taken into consideration. The thermodynamic integration scheme includes two steps. In the first step, the bulk Tersoff system is reversibly transformed to a state where it interacts with a structureless flat wall, and in a second step, the flat structureless wall is reversibly transformed into an atomistic SiO2 wall. Interfacial energies for liquid silicon-wall interfaces and crystal silicon-wall interfaces have been calculated. The calculated interfacial energies have been employed to predict the nucleation mechanisms in a slab of liquid silicon confined by two walls and compared with MD simulation results.

Department(s)

Mechanical and Aerospace Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Second Research Center/Lab

Intelligent Systems Center

International Standard Serial Number (ISSN)

0021-9606

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2016 American Institute of Physics (AIP), All rights reserved.

Publication Date

01 Jan 2016

Share

 
COinS