Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices

Abstract

Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.

Meeting Name

45th AIAA Fluid Dynamics Conference (2015: Jun. 22-26, Dallas, TX)

Department(s)

Mechanical and Aerospace Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

International Standard Book Number (ISBN)

978-1624103629

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2015 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.

Publication Date

01 Jun 2015

This document is currently not available here.

Share

 
COinS