Abstract
In this article the problem of bounding transient growth in iterative learning control (ILC) is examined. While transient growth is not a desirable property, the alternative, robust monotonic convergence, leads to fundamental performance limitations. to circumvent these limitations, this article considers the possibility that some transient growth, if properly limited, is a viable and practical option. Towards this end, this article proposes tools for analysing worst-case transient growth in ILC. the proposed tools are based on pseudospectra analysis, which is extended to apply to ILC of uncertain systems. Two practical problems in norm-optimal ILC weighting parameter design are considered. Using the presented tools, it is demonstrated that successful design in the transient growth regime is possible, i.e. the transient growth is kept small while significantly improving asymptotic performance, despite model uncertainty.
Recommended Citation
D. A. Bristow and J. R. Singler, "Towards Transient Growth Analysis and Design in Iterative Learning Control," International Journal of Control, Taylor & Francis, Jan 2011.
The definitive version is available at https://doi.org/10.1080/00207179.2011.596224
Department(s)
Mechanical and Aerospace Engineering
Second Department
Mathematics and Statistics
International Standard Serial Number (ISSN)
0020-7179
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2011 Taylor & Francis, All rights reserved.
Publication Date
01 Jan 2011