Abstract

Overwhelming computational requirements of classical dynamic programming algorithms render them inapplicable to most practical stochastic problems. To overcome this problem a neural network based Dynamic Programming (DP) approach is described in this study. The cost function which is critical in a dynamic programming formulation is approximated by a neural network according to some designed weight-update rule based on Temporal Difference(TD)learning. A Lyapunov based theory is developed to guarantee an upper error bound between the output of the cost neural network and the true cost. We illustrate this approach through a retailer inventory problem.

Meeting Name

44th IEEE Conference on Decision and Control

Department(s)

Mechanical and Aerospace Engineering

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2005 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2005

Share

 
COinS