Abstract
Adaptive critic (AC) neural network solutions to optimal control designs using dynamic programming has reduced the need of complex computations and storage requirements that typical dynamic programming requires. In this paper, a "single network adaptive critic" (SNAC) is presented. This approach is applicable to a class of nonlinear systems where the optimal control (stationary) equation is explicitly solvable for control in terms of state and costate variables. The SNAC architecture offers three potential advantages; a simpler architecture, significant savings of computational load and reduction in approximation errors. In order to demonstrate these benefits, a real-life micro-electro-mechanical-system (MEMS) problem has been solved. This demonstrates that the SNAC technique is applicable for complex engineering systems. Both AC and SNAC approaches are compared in terms of some metrics.
Recommended Citation
R. Padhi et al., "Optimal Control Synthesis of a Class of Nonlinear Systems Using Single Network Adaptive Critics," Proceedings of the American Control Conference, 2004, Institute of Electrical and Electronics Engineers (IEEE), Jan 2004.
Meeting Name
American Control Conference, 2004
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Adaptive Control; Adaptive Critic Neural Network; Approximation Error Reduction; Approximation Theory; Complex Engineering Systems; Computational Complexity; Computational Load; Control System Synthesis; Costate Variables; Dynamic Programming; Large-Scale Systems; Microelectromechanical System; Micromechanical Devices; Neural Net Architecture; Neurocontrollers; Nonlinear Control Systems; Nonlinear Systems; Optimal Control; Optimal Control Equation; Optimal Control Synthesis; Single Network Adaptive Critic Architecture; State Variables; Stationary Equation; Storage Requirements
International Standard Serial Number (ISSN)
0743-1619
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2004 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2004