Abstract
Optical limiting effects in SrBi2Ta2O9 (SBT) and PbZrxTi1-xO3 (PZT) ferroelectric thin films have been observed with nanosecond laser pulses at 1.064 µm. Limiting thresholds were found to be 5.84 J/cm2 for SBT and between 4.53 and 5.93 J/cm2 for PZT, depending on composition, whereas saturation thresholds for the films were about 2.92 J/cm2 and between 2.27 J/cm2 to 2.97 J/cm2, respectively. Damage thresholds around 10.0 J/cm2 and between 10.37 J/cm2 to 10.54 J/cm2, respectively for SBT and PZT, were also determined. A possible mechanism for the observed limiting, nonlinear optical scattering from the ferroelectric domains, is discussed. These results elucidate the origin of the nonlinear optical properties in perovskite-type ferroelectric thin films and show the potential role such materials can play in photonic devices based on nonlinear optical effects.
Recommended Citation
P. Yang et al., "Optical Limiting in SrBi₂Ta₂O₉ and PbZrxTi₁₋ₓO₃ Thin Films," Applied Physics Letters, American Institute of Physics (AIP), May 2002.
The definitive version is available at https://doi.org/10.1063/1.1477618
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Bismuth Compounds; Electric Domains; Ferroelectric Ceramics; Ferroelectric Thin Films; Lead Compounds; Optical Limiters; Optical Materials; Optical Saturation; Photonic Band Gap; Strontium Compounds
International Standard Serial Number (ISSN)
0003-6951
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2002 American Institute of Physics (AIP), All rights reserved.
Publication Date
01 May 2002