Abstract
Motion is an important cue for video understanding and is widely used in many semantic video analyses. We present a new motion representation scheme in which motion in a video is represented by the responses of frames to a set of motion filters. Each of these filters is designed to be most responsive to a type of dominant motion. Then we employ hidden Markov models (HMMs) to characterize the motion patterns based on these features and thus classify basketball video into 16 events. The evaluation by human satisfaction rate to classification result is 75%, demonstrating effectiveness of the proposed approach to recognizing semantic events in video.
Recommended Citation
G. Xu et al., "Motion Based Event Recognition Using HMM," Institute of Electrical and Electronics Engineers (IEEE), Jan 2002.
The definitive version is available at https://doi.org/10.1109/ICPR.2002.1048431
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
HMM; Basketball Video; Feature Extraction; Filtering Theory; Hidden Markov Models; Human Satisfaction Rate; Image Classification; Image Recognition; Image Representation; Image Sequences; Motion Based Event Recognition; Motion Estimation; Motion Filters; Motion Patterns; Motion Representation Scheme; Semantic Video Analysis; Sport; Video Signal Processing; Video Understanding
International Standard Serial Number (ISSN)
1051-4651
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2002 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2002