Abstract
A new suboptimal control method is proposed in this study to effectively design an integrated guidance and control system for missiles. Optimal formulations allow designers to bring together concerns about guidance law performance and autopilot responses under one unified framework. They lead to a natural integration of these different functions. by modifying the appropriate cost functions, different responses, control saturations (autopilot related), miss distance (guidance related), etc., which are of primary concern to a missile system designer, can be easily studied. A new suboptimal control method, called the θ-D method, is employed to obtain an approximate closed-form solution to this nonlinear guidance problem based on approximations to the Hamilton-Jacobi-Bellman equation. Missile guidance law and autopilot design are formulated into a single unified state space framework. The cost function is chosen to reflect both guidance and control concerns. The ultimate control input is the missile fin deflections. A nonlinear six-degree-of-freedom (6-DOF) missile simulation is used to demonstrate the potential of this new integrated guidance and control approach.
Recommended Citation
M. Xin et al., "Integrated Guidance and Control of Missiles with Θ-D Method," IEEE Transactions on Control Systems Technology, Institute of Electrical and Electronics Engineers (IEEE), Nov 2006.
The definitive version is available at https://doi.org/10.1109/TCST.2006.876903
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Missile integrated guidance and control; nonlinear systems; optimal control; theta - D technique
International Standard Serial Number (ISSN)
1063-6536
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Nov 2006