Theory of Geometrically Nonlinear Composite Plates with Piezoelectric Stiffeners

Abstract

The governing equations for geometrically nonlinear, arbitrary laminated rectangular plates reinforced by the stiffeners that include piezoelectric and composite layers are presented. General equations obtained in the paper are reduced to a single equation of motion for piezoelectrically reinforced, geometrically linear, specially orthotropic plates. A criterion for an effective control of forced vibrations of such plates using piezoelectric stiffeners and a static electric field is illustrated. In addition, an approach to the analysis of piezoelectrically stiffened nonlinear plates whose motion is represented by single-term functions of the coordinates is discussed. Numerous active control problems can be addressed using the theory outlined in the paper.

Meeting Name

American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC (1992, Anaheim, CA, USA)

Department(s)

Mechanical and Aerospace Engineering

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1992 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 1992

This document is currently not available here.

Share

 
COinS