Sphering of a Liquid-Filled Membrane

Abstract

The effect of the initial shape on the deformed configuration is discussed. Under variable submergence the membrane goes through a series of sessile configurations and finally spheres when it is completely submerged. No a priori assumption is made as to the ability of the membrane to sphere. The depth of submergence corresponding to a deformed shape is calculated inversely by utilizing the Archimedes principle. the governing equations, which are nonlinear ordinary differential-integral type, are solved numerically by the Runge-Kutta integration process using S/360 Computer Systems Modeling Program. The problem suggests numerous applications to osmosis membrane structures in desalination plants, preservationof certain biological organs and organisms, and underwater technology.

Department(s)

Mechanical and Aerospace Engineering

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Publication Date

01 Jan 1972

This document is currently not available here.

Share

 
COinS