Application of Large Elastic Deformation Theory to the Calculation of Liquid Drop Shapes of Some Polymers
Abstract
Considering the analogy of a liquid surface to a stretched membrane, the theory of large elastic deformations is used to calculate the deformed shapes of sessile and pendent liquid drops of some polymers. In particular, the liquid drops are treated as highly deformable liquid-filled membranes that follow a neo-Hookean constitutive equation. Since, with the advent of sophisticated pressure transducers, it is easier to measure pressure accurately than to determine the curvature of the liquid drop geometry, the problem is formulated in terms of the pressure prescribed at the tip of the liquid drop with a varying hydrostatic pressure. The governing equations consisting of a non-linear ordinary differential equation and a Volterra type integral equation are solved numerically on a digital computer. Based on the solution of the governing equations, a procedure to estimate the surface tension of a polymer from the shape factor versus pressure curves is illustrated. Also, by increasing the pressure and by balancing the vertical component of the surface tension against the weight of a pendent liquid drop the size of a drop separated from a liquid column is predicted. © 1973 Dr. Dietrich Steinkopff Verlag.
Recommended Citation
X. J. Avula, "Application of Large Elastic Deformation Theory to the Calculation of Liquid Drop Shapes of Some Polymers," Rheologica Acta, Springer, Jan 1973.
The definitive version is available at https://doi.org/10.1007/BF01635104
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
0035-4511
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1973 Springer, All rights reserved.
Publication Date
01 Jan 1973